所在位置: 首页 > 《鞍山教育》网络版 > 2018年-4期 > 教学研究

九年数学(上)教材分析与解读

作者:王征 栏目:2018年-4期 教学研究

       无论课程改革怎样改,钻研教材把握教材是教师永远的基本功。只有把握好教材,教师在教学中才能游刃有余。

  一、新课程标准要求

  新课标将初中数学分为:数与代数、空间与图形、统计与概率、实践与运用四个领域进行阐述,拓宽了学习的知识面,使学生尽早体会到数学的全貌,破除数学的神秘感,从而树立起学好数学的信心。

  数与代数:

  教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律。注重使学生经历从实际问题中建立数学模型。

  空间与图形:

  教学中,应注重所学内容与现实生活的联系。注重使学生经历观察、操作、推理、想象等探索过程。

  统计与概率:

  教学中,应注重所学内容与自然、社会和科学技术领域的联系。使学生体会统计与概率,对制定决策的重要作用。

  实践与运用:

  教学时应引导学生结合生活经验,清楚地表达自己的观点,并能解决一些实际问题。

  二、九年数学教材特点

  新人教版九年级数学课本的理念很新,注重学生的探究性学习,培养学生的动手实验能力和自主探索等方面,完全有别于旧版教材。

  (1)使教科书成为反映科学进步、介绍先进文化的镜子

  ①重视科学,关注文化。重视数学的科学价值,同时关注其文化内涵。通过教科书这面镜子的反射,结合教学内容生动活泼地介绍古今数学的发展,深入浅出地反映数学的作用(工具作用和人文教育作用),使学生逐步地认识数学的科学价值和人文价值,提高科学文化素养。

  ②重视基础,返璞归真。重视中学数学在数学科学和其他科学中的基础作用,强调基础知识和基本方法在实现从算术到代数、从实验几何到论证几何、从常量数学到变量数学、从确定性数学到随机性数学等重大转折中的作用。引导学生认识初等数学的本质,返璞归真,为进一步学习数学和应用数学打好基础。

  ③重视思想,立足发展。重视渗透和揭示基本的数学思想方法,更好地反映数学内部的联系以及它与相关学科的联系,注意教科书内容的开放性和多元性,使学生经历实验、探索的过程,体验如何运用数学思想方法分析和解决问题,培养学习数学和应用数学的能力,播撒“尊重科学、热爱科学、善于思考、勇于创新”的种子,搭建可持续发展的平台。

  (2)突出学生主体地位,体现学习方式转变

  ①贴近生活,注重过程。内容素材的选取,要力求贴近学生的生活实际和社会现实;教科书的组织安排,要注重知识的发生发展过程、学生的认知过程和情感体验过程,为构建丰富的学习环境提供重要资源。

  ②发展思维,引导探索。内容的呈现要努力体现数学思维规律,引导学生积极探索,使他们经历“观察、实验、比较、归纳、猜想、推理、反思”等理性思维活动的基本过程,优化思维品质,提高数学思维能力,培养创新精神和实践能力。

  ③精编问题,创设情境。精心选编现实生活和数学发展中的典型问题,创设问题情境,通过分析和解决问题,加深对知识本质的理解,强化知识之间的联系,领悟和掌握数学思想方法,使问题在教科书中发挥更大的作用。注意问题的基础性、思想性、开放性、趣味性等。在“复习巩固”“综合运用”“拓广探索”等栏目下,有针对性地选配习题,为学生提供充分发展的空间。

  (3)改进教科书的呈现形式,加强现代信息技术的运用

  ①改进呈现形式,激发学习兴趣。精心设计教科书的呈现形式,改进栏目设置、版面设计、图文选配等,用学生喜闻乐见的形式(包括科普小品等)呈现教材内容,适当设问、留白、引导,加大探索空间,安排具有综合性、探究性、开放性的“数学活动”,激发学生的学习兴趣,增强他们对教科书的亲近感和认同感。

  ②重视信息技术,改进学习手段。重视现代信息技术的发展对数学和数学教育产生的深远影响,发挥信息技术的力量,有意识地引入计算机(器)、网络等进行信息处理(包括快速计算、自动制表、智能绘图、人机交互等),设置“信息技术应用”专栏(选学内容),为学生提供丰富多彩的教育环境和有力的学习工具。

  三、教材内容分析

  九年级教材包含四大领域,共9章内容,上册5章,上册内容如下:

  第21章 一元二次方程

  学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 ── 一元二次方程。本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念。

  “ 降次──解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。

  (1)在介绍配方法时,首先通过实际问题引出。这样的方程可以化为更为简单的方程,由平方根的概念,可以得到这个方程的解。

  (2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

  (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

  “实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

  第22章 二次函数

  第1节“二次函数”首先从简单的实际问题出发,从中引发和归纳出二次函数的概念;然后由函数开始,逐步深入地、由特殊到一般地、数形结合地讨论图象和基本性质,最后安排了运用二次函数基本性质探究最大(小)值的问题。这些内容都是二次函数的基础知识,它们为后面两节的学习打下理论基础。

  第2节“用函数观点看一元二次方程”从一个斜抛物体(例如高尔夫球)的飞行高度问题入手,以给出二次函数的函数值反过来求自变量的值的形式,用函数观点讨论一元二次方程的根的几种不同情况,最后结合二次函数的图象(抛物线)归纳出一般性结论,并介绍了利用图象解一元二次方程的方法。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

  第3节“实际问题与二次函数”安排了三个探究性问题,以商品价格、磁盘存储量和拱桥桥洞的有关问题为背景,运用二次函数分析和解决实际问题。教材从实际问题出发,引导学生分析问题中的数量关系,建立相应的数学模型即列出函数关系式,进而利用二次函数的性质和图象研究问题的解法。通过这一节的学习可以使学生对解决实际问题的数学模型的认识再提高一步,从而提高运用数学分析问题和解决问题的能力。

  第23章 旋转

  学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员——旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。“旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。

  “中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。

  “课题学习图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。

  第24 章 圆

  圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生解决图形问题的能力将会进一步提高。“ 圆”一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。

  “与圆有关的位置关系”一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明“在同一直线上的三点不能作圆”引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。

  “正多边形和圆”一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。

  “ 弧长和扇形面积”一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。

  第25章 概率初步

  将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。“ 概率”一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。

  “用列举法求概率”一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。

  “利用频率估计概率”一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。

  “课题学习 键盘上字母的排列规律”一节让学生通过这一课题的研究体会概率的广泛应用。

  四、处理教材时注意以下四点

  1、简约——化难为易,易于理解

  就是教师对教材进行挖掘、梳理、浓缩,使课堂教学内容化难为易,学生易于理解掌握;

  2、扩充——多向思维,开拓思路

  就是根据课堂教学的实际需要,对教材内容进行适当的补充、增加;

  3、探究——以疑促思,体验感悟

  通过教师对教材的加工和处理,使课堂上学生的活动更具有探究性;

  4、拓展——扩展课外,延伸社会

  既立足于课堂,又不局限于课堂,努力做到课堂向课前延伸,向课后拓展,向大自然、社会和家庭开放,努力促进多种教学资源的利用。

  总而言之:好的教学效果=好的教学内容+好的呈现形式+好的教学方法。

 

该文章已被阅读 次。投稿邮箱:anshanjiaoyu@163.com